
Package: Strategy (via r-universe)
August 28, 2024

Type Package

Title Generic Framework to Analyze Trading Strategies

Version 1.0.1

Date 2017-08-21

Author Julian Busch

Maintainer Julian Busch <jb@quants.ch>

Depends R (>= 3.2.3)

Imports stats, utils, graphics, grDevices, methods, zoo, xts

Description Users can build and test customized quantitative trading
strategies. Some quantitative trading strategies are already
implemented, e.g. various moving-average filters with trend
following approaches. The implemented class called ``Strategy''
allows users to access several methods to analyze performance
figures, plots and backtest the strategies. Furthermore, custom
strategies can be added, a generic template is available. The
custom strategies require a certain input and output so they
can be called from the Strategy-constructor.

License GPL

LazyData TRUE

Suggests knitr

VignetteBuilder knitr

RoxygenNote 6.0.1

NeedsCompilation no

Date/Publication 2017-08-24 16:30:36 UTC

Repository https://quantsch.r-universe.dev

RemoteUrl https://github.com/cran/Strategy

RemoteRef HEAD

RemoteSha 8e20477270800b831be0ab443ed2d873b44dd8d8

1



2 assets

Contents
assets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
backtest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
ES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
getBacktestSetup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
getCosts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
getFilters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
getIndicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
getParameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
getPrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
getSignals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
getStratFUN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
getStratName . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
getTrades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
getWeights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
hitratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
MDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
newStrategyFunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
performanceIndicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
plotDrawdowns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
plotPerformance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
plotWeights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
sharpe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Strategy-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
VaR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Index 32

assets Random walks for 10 assets as example data.

Description

The dataset contains the price data (not returns!), each starting at a value of 100. The dates are
randomly recreated by choosing the latest date as Sys.Date() going backwards on a daily basis per
row.

Usage

assets



backtest 3

Format

An xts-object with 1000 rows and 10 variables:

asset1 Column with price data of a random walk called asset1.

asset2 Column with price data of a random walk called asset2. ...

backtest Backtest Strategy

Description

Walk forward analysis backtest with the specified parameters on an object of class Strategy. The
backtest calibrates the parameters according to the specification given by the user (in-sample) and
returns the trading signals for the following period (out-of-sample). This is iteratively repeated on
a shifting time window. Computer performance is critical with this function.

Usage

backtest(object, horizon = "6m", data.width = "24m", keep.history = F,
optim.param = NULL, optim.param.min = 1, optim.param.max = 10,
optim.param.scale = 0.1, from = NULL, until = NULL, which = NULL,
rf = 0, printSteps = F)

## S4 method for signature 'Strategy'
backtest(object, horizon = "6m", data.width = "24m",
keep.history = F, optim.param = NULL, optim.param.min = 1,
optim.param.max = 10, optim.param.scale = 0.1, from = NULL,
until = NULL, which = NULL, rf = 0, printSteps = F)

Arguments

object An object of class Strategy.

horizon The out-of-sample period length.

data.width The in-sample period length used for calibration.

keep.history If set to TRUE, the starting point of in-sample data is kept fixed, so the period
extends each iteration.

optim.param A character vector providing the names of the parameters to be calibrated. Pa-
rameters that are not provided will be kept fix.

optim.param.min

A numeric vector providing the minimum values of the parameters that are cal-
ibrated.

optim.param.max

A numeric vector providing the maximum values of the parameters that are cal-
ibrated.



4 compare

optim.param.scale

A numeric vector providing the scaling of the parameters that are calibrated. It
is advisable to set scaling of the parameters to the smallest unit that makes sense.

from The date in character format "yyyy-MM-dd" or as date-object from which assets
shall be considered. If NULL, no restriction is made.

until The date in character format "yyyy-MM-dd" or as date-object until which assets
shall be considered. If NULL, no restriction is made.

which Names or number of assets that should be included in backtest
rf Risk free rate in decimal, e.g. rf=0.01 equals 1 percent.
printSteps This is a feature used mainly for debugging the constructor function in order

to localize where unspecified errors occur. If set to true, the different steps run
within the constructor is printed to the console.

Examples

##Not run:
# MA(200)-Strategy
params <- list(k=20)
# reduce dataset due to computation time
assets_r <- assets[tail(zoo::index(assets),100)]
myStrat.MA <- Strategy(assets=assets_r, strat="MA", strat.params=params)

# Perform backtest on MA(20)-Strategy with
# out-of-sample periods of 2 months
# and in-sample-calibration of 2 months
# This example requires a lot of computation time,
# so this is only performed for 1 asset and high scaling.
backtest(myStrat.MA, horizon="2m", data.width="2m"

, optim.param="k", optim.param.min=5, optim.param.max=10
, optim.param.scale=5, printSteps = TRUE, which=1)

##End(Not run)

compare Compare performance of Strategy-objects.

Description

Compare the portfolio performance indicators of an arbitrary number of objects of class Strategy.

Usage

compare(..., from=NULL, until=NULL, which=NULL
, scaling.periods=NULL, include.costs=TRUE
, use.backtest=FALSE, include.params=FALSE)

## S4 method for signature 'Strategy'
compare(..., from = NULL, until = NULL, which = NULL,
scaling.periods = NULL, include.costs = TRUE, use.backtest = FALSE,
include.params = FALSE)



ES 5

Arguments

... Objects of class Strategy.

from The date in character format "yyyy-MM-dd" or as date-object from which per-
formance shall be considered. If NULL, no restriction is made.

until The date in character format "yyyy-MM-dd" or as date-object until which per-
formance shall be considered. If NULL, no restriction is made.

which Names or number of assets that should be included in calculation.
scaling.periods

Vector with annualization factors for calculation. Default is 252, 52, 12, 4, 1 for
daily, weekly, monthly, quarterly and yearly data respectively.

include.costs If FALSE, the fixed and relative trading costs are NOT considered for perfor-
mance calculation. Default value is TRUE. As default values for costs are 0, this
argument is obsolete if no costs are given.

use.backtest If TRUE, the performance of the backtesting output is considered for performance
indicator calculation. If FALSE, the performance of the initial strategy execution
are used.

include.params If TRUE the parameters of the strategies are included in their names. E.g. MA(k=200)
instead of MA as strategy name for moving average.

Examples

##Not run:

# MA(200)-Strategy
params <- list(k=200)
myStrat.MA <- Strategy(assets=assets, strat="MA", strat.params=params)

# EWMA(0.05)-Strategy
params <- list(lambda=0.05)
myStrat.EWMA <- Strategy(assets=assets, strat="EWMA", strat.params=params)

# Compare annualized performance of MA(200) and EWMA(0.05)
# compare(myStrat.MA, myStrat.EWMA, use.backtest=TRUE, scaling.periods=252)

##End(Not run)

ES Expected Shortfall

Description

Expected Shortfall of the assets or portfolio of an object of class Strategy.



6 ES

Usage

ES(object, alpha=0.05, V=1
, type="normal.distribution", method="full"
, of="portfolio", from=NULL, until=NULL, which=NULL
, scaling.periods=NULL, include.weights=TRUE
, include.costs=TRUE, use.backtest=FALSE)

## S4 method for signature 'Strategy'
ES(object, alpha = 0.05, V = 1,
type = c("normal.distribution", "historical"), method = c("full",
"linear"), of = c("portfolio", "assets"), from = NULL, until = NULL,
which = NULL, scaling.periods = NULL, include.weights = TRUE,
include.costs = TRUE, use.backtest = FALSE)

Arguments

object An object of class Strategy.

alpha The significance level α that is used for probability of cumulative loss at level
1− α.

V Volume that is invested. The linear factor for the ES calculation. Either a single
value for portfolio or a vector for each asset.

type Type of ES calculation. Use normal.distribution for the normal distribution,
historical for the empirical distribution.

method Method of loss calculation. Use linear for approximation with log returns or
full for calculation with arithmetic returns.

of ES to be calculated for assets separately or the portfolio.

from The date in character format "yyyy-MM-dd" or as date-object from which losses
shall be considered. If NULL, no restriction is made.

until The date in character format "yyyy-MM-dd" or as date-object until which losses
shall be considered. If NULL, no restriction is made.

which Names or number of assets that should be included in calculation.
scaling.periods

Vector with annualization factors for calculation. Default is 252, 52, 12, 4, 1 for
daily, weekly, monthly, quarterly and yearly data respectively.

include.weights

Only relevant if of="assets": If FALSE, weights are all set to 1. This might be
necessary if only single stock performance without weighting shall be consid-
ered.

include.costs If FALSE, the fixed and relative trading costs are NOT considered for ES calcu-
lation. Default value is TRUE. As default values for costs are 0, this argument is
obsolete if no costs are given.

use.backtest If TRUE, the performance of the backtesting output is considered for VaR calcu-
lation. If FALSE, the performance of the initial strategy execution are used.



getBacktestSetup 7

Examples

##Not run:

# MA(200)-Strategy
params <- list(k=200)
myStrat.MA <- Strategy(assets=assets, strat="MA", strat.params=params)

# Get ES of MA(200)-Strategy portfolio
ES(myStrat.MA, from="2015-01-01", until="2015-12-31")

# Get backtest ES of MA(200)-Strategy (backtest would need to be executed first!)
# ES(myStrat.MA, from="2015-01-01", until="2015-12-31", use.backtest=TRUE)

##End(Not run)

getBacktestSetup Get backtest parameter values from Strategy-object

Description

Gets the backtest parameter values of an object of class Strategy that were used for backtesting
the strategy. This includes the information about the parameters,

Usage

getBacktestSetup(object)

## S4 method for signature 'Strategy'
getBacktestSetup(object)

Arguments

object An object of class Strategy.

Examples

##Not run:

# MA(200)-Strategy
params <- list(k=200)
myStrat.MA <- Strategy(assets=assets, strat="MA", strat.params=params)

# Get backtest setup from MA(200)-Strategy
getBacktestSetup(myStrat.MA)

##End(Not run)



8 getFilters

getCosts Get strategy function from Strategy-object

Description

Returns the fixed and relative trading costs of an object of class Strategy..

Usage

getCosts(object)

## S4 method for signature 'Strategy'
getCosts(object)

Arguments

object An object of class Strategy.

Examples

##Not run:

# MA(200)-Strategy
params <- list(k=200)
myStrat.MA <- Strategy(assets=assets, strat="MA", strat.params=params)

# Get strategy function from MA(200)-Strategy
MA.costs <- getCosts(myStrat.MA)
# return fix costs
MA.costs$fix
# return relative costs
MA.costs$relative

##End(Not run)

getFilters Get strategy values from Strategy-object

Description

Gets the strategy values of an object of class Strategy that were output from strategy calculation.

Usage

getFilters(object, which = NULL)

## S4 method for signature 'Strategy'
getFilters(object, which = NULL)



getIndicators 9

Arguments

object An object of class Strategy.

which Which filters shall be returned. Either list number or names to be passed.

Examples

##Not run:

# MA(200)-Strategy
params <- list(k=200)
myStrat.MA <- Strategy(assets=assets, strat="MA", strat.params=params)

# Get strategy values from MA(200)-Strategy
getFilters(myStrat.MA) # all strategy values returned

##End(Not run)

getIndicators Get indicators from Strategy-object

Description

Gets the indicators data of an object of class Strategy that was used within strategy calculation.

Usage

getIndicators(object, from = NULL, until = NULL, which = NULL)

## S4 method for signature 'Strategy'
getIndicators(object, from = NULL, until = NULL,
which = NULL)

Arguments

object An object of class Strategy.

from The date in character format "yyyy-MM-dd" or as date-object from which indi-
cators shall be returned. If NULL, no restriction is made.

until The date in character format "yyyy-MM-dd" or as date-object until which indi-
cators shall be returned. If NULL, no restriction is made.

which Names or list-number of indicators that should be included. If NULL, all indica-
tors are returned.



10 getParameters

Examples

##Not run:

# MA(200)-Strategy
params <- list(k=200)
randreturns <- xts::xts(rnorm(nrow(assets)), order.by=
seq(from=Sys.Date()-nrow(assets)+1, to=Sys.Date(), by="d"))
indicators <- list(returns=randreturns) # example: random returns
myStrat.MA <- Strategy(assets=assets, strat="MA", strat.params=params, indicators=indicators)

# Get indicator data from MA(200)-Strategy
getIndicators(myStrat.MA, from="2015-01-01", until="2015-12-31")

##End(Not run)

getParameters Get strategy function parameters from Strategy-object

Description

Gets the strategy function parameters of an object of class Strategy that were used for strategy
calculation.

Usage

getParameters(object, use.backtest = FALSE)

## S4 method for signature 'Strategy'
getParameters(object, use.backtest = FALSE)

Arguments

object An object of class Strategy.

use.backtest If set to TRUE, the calibrated parameters of the backtest are returned. Requires
backtest to be executed first.

Examples

##Not run:

# MA(200)-Strategy
params <- list(k=200)
myStrat.MA <- Strategy(assets=assets, strat="MA", strat.params=params)

# Get parameters from MA(200)-Strategy
getParameters(myStrat.MA)

##End(Not run)



getPrices 11

getPrices Get price data from Strategy-object

Description

Gets the price data of an object of class Strategy that was used within strategy calculation.

Usage

getPrices(object, from = NULL, until = NULL, which = NULL)

## S4 method for signature 'Strategy'
getPrices(object, from = NULL, until = NULL,
which = NULL)

Arguments

object An object of class Strategy.

from The date in character format "yyyy-MM-dd" or as date-object from which prices
shall be returned. If NULL, no restriction is made.

until The date in character format "yyyy-MM-dd" or as date-object until which prices
shall be returned. If NULL, no restriction is made.

which Names or column-number of assets that should be included. If NULL, all prices
are returned.

Examples

##Not run:

# MA(200)-Strategy
params <- list(k=200)
myStrat.MA <- Strategy(assets=assets, strat="MA", strat.params=params)

# Get price data from MA(200)-Strategy
getPrices(myStrat.MA, from="2015-01-01", until="2015-12-31")

##End(Not run)

getSignals Get trading signals from Strategy-object

Description

Gets the trading signals of an object of class Strategy that were output from strategy calculation.



12 getStratFUN

Usage

getSignals(object, from = NULL, until = NULL, which = NULL,
use.backtest = FALSE)

## S4 method for signature 'Strategy'
getSignals(object, from = NULL, until = NULL,
which = NULL, use.backtest = FALSE)

Arguments

object An object of class Strategy.
from The date in character format "yyyy-MM-dd" or as date-object from which signals

shall be returned. If NULL, no restriction is made.
until The date in character format "yyyy-MM-dd" or as date-object until which signals

shall be returned. If NULL, no restriction is made.
which Names or column-number of assets that should be returned. If NULL, all signals

are returned.
use.backtest If set to TRUE, the signals of the backtest are returned. Requires backtest to be

executed first.

Examples

##Not run:

# MA(200)-Strategy
params <- list(k=200)
myStrat.MA <- Strategy(assets=assets, strat="MA", strat.params=params)

# Get signals from MA(200)-Strategy
# all signals returned
getSignals(myStrat.MA)
# backtest signals for first two assets returned
# getSignals(myStrat.MA, which=c(1,2), use.backtest=TRUE)

##End(Not run)

getStratFUN Get strategy function from Strategy-object

Description

Gets the strategy function of an object of class Strategy that was used for strategy calculation.

Usage

getStratFUN(object)

## S4 method for signature 'Strategy'
getStratFUN(object)



getStratName 13

Arguments

object An object of class Strategy.

Examples

##Not run:

# MA(200)-Strategy
params <- list(k=200)
myStrat.MA <- Strategy(assets=assets, strat="MA", strat.params=params)

# Get strategy function from MA(200)-Strategy
MA.FUN <- getStratFUN(myStrat.MA)

##End(Not run)

getStratName Get strategy function name from Strategy-object

Description

Gets the strategy function name of an object of class Strategy that was used for strategy calcula-
tion. This function is for aesthetic purposes only and does not have any numerical relevance.

Usage

getStratName(object, include.params = FALSE)

## S4 method for signature 'Strategy'
getStratName(object, include.params = FALSE)

Arguments

object An object of class Strategy.
include.params If set to TRUE, the parameters used for strategy evaluation are included.

Examples

##Not run:

# MA(200)-Strategy
params <- list(k=200)
myStrat.MA <- Strategy(assets=assets, strat="MA", strat.params=params)

# Get strategy function name from MA(200)-Strategy
getStratName(myStrat.MA) # returns "MA"
getStratName(myStrat.MA, include.params=TRUE) # returns "MA(200)"

##End(Not run)



14 getTrades

getTrades Get trades according to the signals from the Strategy-object

Description

Gets the trades of an object of class Strategy that were performed within strategy calculation.

Usage

getTrades(object, from = NULL, until = NULL, which = NULL,
of = "signals", use.backtest = FALSE)

## S4 method for signature 'Strategy'
getTrades(object, from = NULL, until = NULL,
which = NULL, of = c("signals", "weights"), use.backtest = FALSE)

Arguments

object An object of class Strategy.

from The date in character format "yyyy-MM-dd" or as date-object from which trades
shall be returned. If NULL, no restriction is made.

until The date in character format "yyyy-MM-dd" or as date-object until which trades
shall be returned. If NULL, no restriction is made.

which Names or column-number of assets that should be included. If NULL, trades for
all assets are returned.

of Trades to be calculated on basis of trading signals or weights of portfolio.

use.backtest If set to TRUE, the trades of the backtest are returned. Requires backtest to be
executed first.

Examples

##Not run:

# MA(200)-Strategy
params <- list(k=200)
myStrat.MA <- Strategy(assets=assets, strat="MA", strat.params=params)

# Get price data from MA(200)-Strategy
getTrades(myStrat.MA, from="2015-01-01", until="2015-12-31")

##End(Not run)



getWeights 15

getWeights Get weights from Strategy-object

Description

Gets the weights data of an object of class Strategy that was used within strategy calculation.

Usage

getWeights(object, from = NULL, until = NULL, which = NULL,
use.backtest = FALSE)

## S4 method for signature 'Strategy'
getWeights(object, from = NULL, until = NULL,
which = NULL, use.backtest = FALSE)

Arguments

object An object of class Strategy.

from The date in character format "yyyy-MM-dd" or as date-object from which weights
shall be returned If NULL, no restriction is made.

until The date in character format "yyyy-MM-dd" or as date-object until which weights
shall be returned. If NULL, no restriction is made.

which Names or column-number of assets that should be included. If NULL, all weights
are returned.

use.backtest If set to TRUE, the weights of the backtest are returned. Requires backtest to be
executed first.

Examples

##Not run:

# MA(200)-Strategy
params <- list(k=200)
myStrat.MA <- Strategy(assets=assets, strat="MA", strat.params=params)

# Get weights data from MA(200)-Strategy
getWeights(myStrat.MA, from="2015-01-01", until="2015-12-31")

##End(Not run)



16 hitratio

hitratio Strategy Hit Ratio

Description

Gets the hitratio of the signals of an object of class Strategy.

Usage

hitratio(object, of="portfolio"
, from=NULL, until=NULL, which=NULL
, type="per.signal", include.costs=TRUE
, use.backtest=FALSE)

## S4 method for signature 'Strategy'
hitratio(object, of = c("portfolio", "assets"),
from = NULL, until = NULL, which = NULL, type = c("per.signal",
"per.trade"), include.costs = TRUE, use.backtest = FALSE)

Arguments

object An object of class Strategy.

of Hit Ratio to be calculated for assets separately or the portfolio (weighted hit
ratios according to average asset weights).

from The date in character format "yyyy-MM-dd" or as date-object from which returns
shall be considered. If NULL, no restriction is made.

until The date in character format "yyyy-MM-dd" or as date-object until which returns
shall be considered. If NULL, no restriction is made.

which Names or number of assets that should be included in calculation.

type If the hitratio shall be calculated per trade with per.trade or per signal per.signal.

include.costs If FALSE, the fixed and relative trading costs are NOT considered for perfor-
mance calculation. Default value is TRUE. As default values for costs are 0, this
argument is obsolete if no costs are given.

use.backtest If set to TRUE, the signals from the backtesting output are considered for maxi-
mum drawdown calculation. If FALSE, the signals from the initial strategy exe-
cution are used.

Examples

## Not run:

# MA(200)-Strategy
params <- list(k=200)
myStrat.MA <- Strategy(assets=assets, strat="MA", strat.params=params)



loss 17

# Get hit ratio of MA(200)-Strategy portfolio
hitratio(myStrat.MA, from="2015-01-01", until="2015-12-31")

# Get hit ratio of MA(200)-Strategy (daily data = 252 trading days)
# hitratio(myStrat.MA, from="2015-01-01", until="2015-12-31", use.backtest=TRUE)

## End(Not run)

loss Get the losses of assets or portfolio over time.

Description

Losses over time of an assets or portfolio of an object of class Strategy.

Usage

loss(object, V=100, method="full", of="portfolio"
, from=NULL, until=NULL, which=NULL
, include.weights=TRUE, include.costs=TRUE
, use.backtest=FALSE)

## S4 method for signature 'Strategy'
loss(object, V = 100, method = c("full", "linear"),
of = c("portfolio", "assets"), from = NULL, until = NULL,
which = NULL, include.weights = TRUE, include.costs = TRUE,
use.backtest = FALSE)

Arguments

object An object of class Strategy.

V Volume that is invested. The linear factor for the VaR calculation. Either a single
value for portfolio or a vector for each asset.

method Method of loss calculation. Use linear for approximation with log returns or
full for calculation with arithmetic returns.

of Losses to be calculated for assets separately or the portfolio.

from The date in character format "yyyy-MM-dd" or as date-object from which losses
shall be considered. If NULL, no restriction is made.

until The date in character format "yyyy-MM-dd" or as date-object until which losses
shall be considered. If NULL, no restriction is made.

which Names or number of assets that should be included in calculation.
include.weights

Only relevant if of="assets": If FALSE, weights are all set to 1. This might be
necessary if only single stock performance without weighting shall be consid-
ered.



18 MDD

include.costs If FALSE, the fixed and relative trading costs are NOT considered for perfor-
mance calculation. Default value is TRUE. As default values for costs are 0, this
argument is obsolete if no costs are given.

use.backtest If TRUE, the performance of the backtesting output is considered for loss calcu-
lation. If FALSE, the performance of the initial strategy execution are used.

Examples

## Not run:

# MA(200)-Strategy
params <- list(k=200)
myStrat.MA <- Strategy(assets=assets, strat="MA", strat.params=params)

# Get VaR of MA(200)-Strategy portfolio
myStrat.MA.losses <- loss(myStrat.MA, from="2015-01-01", until="2015-12-31")

## End(Not run)

MDD Strategy Performance Maximum Drawdown

Description

Gets the maximum drawdown of the performance of an object of class Strategy.

Usage

MDD(object, of="portfolio"
, from=NULL, until=NULL, which=NULL
, type="relative", include.costs=TRUE
, use.backtest=FALSE)

## S4 method for signature 'Strategy'
MDD(object, of = c("portfolio", "assets"), from = NULL,
until = NULL, which = NULL, type = c("absolute", "relative"),
include.costs = TRUE, use.backtest = FALSE)

Arguments

object An object of class Strategy.

of Maximum Drawdown to be calculated for assets separately or the portfolio.

from The date in character format "yyyy-MM-dd" or as date-object from which per-
formance shall be considered. If NULL, no restriction is made.

until The date in character format "yyyy-MM-dd" or as date-object until which per-
formance shall be considered. If NULL, no restriction is made.

which Names or number of assets that should be included in calculation.



newStrategyFunction 19

type If the absolute or relative drawdown of the performance shall be returned.

include.costs If FALSE, the fixed and relative trading costs are NOT considered for perfor-
mance calculation. Default value is TRUE. As default values for costs are 0, this
argument is obsolete if no costs are given.

use.backtest If set to TRUE, the signals from the backtesting output are considered for maxi-
mum drawdown calculation. If FALSE, the signals from the initial strategy exe-
cution are used.

Examples

## Not run:

# MA(200)-Strategy
params <- list(k=200)
myStrat.MA <- Strategy(assets=assets, strat="MA", strat.params=params)

# Get MDD of MA(200)-Strategy portfolio
MDD(myStrat.MA, from="2015-01-01", until="2015-12-31")

# Get MDD of MA(200)-Strategy (daily data = 252 trading days)
# MDD(myStrat.MA, from="2015-01-01", until="2015-12-31", use.backtest=TRUE)

## End(Not run)

newStrategyFunction Create Own Strategy

Description

Creates a strategy function template file. This file can be used as template for the development of
customized strategies.

Usage

newStrategyFunction(name = NULL, file.path = getwd(), overwrite = FALSE)

Arguments

name String as name of the new function (without spaces).

file.path Valid file path of existing directory where the new function shall be stored in
format file.path/name.R.

overwrite If the strategy file already exists, it will be overwritten if value is TRUE.



20 performance

Examples

##Not run:

# Creates a file myNewStrat.R at the specific file path
newStrategyFunction(name="myNewStrat", file.path=getwd(), overwrite=T)

##End(Not run)

performance Get Strategy Performance

Description

Gets the performance of an object of class Strategy.

Usage

performance(object, of = "portfolio", type = "performance", from = NULL,
until = NULL, which = NULL, use.backtest = FALSE,
include.costs = TRUE)

## S4 method for signature 'Strategy'
performance(object, of = c("portfolio", "assets"),
type = c("performance", "logReturns", "returns"), from = NULL,
until = NULL, which = NULL, use.backtest = FALSE,
include.costs = TRUE)

Arguments

object An object of class Strategy.

of Performance to be extracted from assets separately or the portfolio performance.

type Which type of performance shall be returned. performance is the cumulative
performance starting at 1, logReturns to get logarithmic returns or returns for
arithmetic returns.

from The date in character format "yyyy-MM-dd" or as date-object from which per-
formance shall be returned If NULL, no restriction is made.

until The date in character format "yyyy-MM-dd" or as date-object until which per-
formance shall be returned. If NULL, no restriction is made.

which Names or number of assets that should be included in performance. If a portfolio
performance from only a subset of the assets is calculated, the weights are scaled
accordingly.

use.backtest If TRUE, the signals from the backtesting output are considered for performance
calculation. If FALSE, the signals from the initial strategy execution are used.

include.costs If FALSE, the fixed and relative trading costs are NOT considered for perfor-
mance calculation. Default value is TRUE. As default values for costs are 0, this
argument is obsolete if no costs are given.



performanceIndicators 21

Examples

## Not run:

# MA(200)-Strategy
params <- list(k=200)
myStrat.MA <- Strategy(assets=assets, strat="MA", strat.params=params)

# Get performance of MA(200)-Strategy
performance(myStrat.MA, from="2015-01-01", until="2015-12-31")

# Get backtest performance of MA(200)-Strategy
# performance(myStrat.MA, from="2015-01-01", until="2015-12-31"
# , use.backtest=TRUE, type="logReturns")

## End(Not run)

performanceIndicators Strategy Performance Indicators

Description

Get a list of the performance indicators of an object of class Strategy.

Usage

performanceIndicators(object, of="portfolio"
, from=NULL, until=NULL, which=NULL, alpha=0.05
, scaling.periods=NULL, include.weights=TRUE
, include.costs=TRUE, use.backtest=FALSE)

## S4 method for signature 'Strategy'
performanceIndicators(object, of = c("portfolio",
"assets"), from = NULL, until = NULL, which = NULL, alpha = 0.05,
scaling.periods = NULL, include.weights = TRUE, include.costs = TRUE,
use.backtest = FALSE)

Arguments

object An object of class Strategy.

of Indicators to be calculated for assets separately or the portfolio.

from The date in character format "yyyy-MM-dd" or as date-object from which per-
formance shall be considered. If NULL, no restriction is made.

until The date in character format "yyyy-MM-dd" or as date-object until which per-
formance shall be considered. If NULL, no restriction is made.

which Names or number of assets that should be included in calculation.

alpha The significance level α that is used for propability of cumulative loss at level
1− α.



22 plot

scaling.periods

Vector with annualization factors for calculation. Default is 252, 52, 12, 4, 1 for
daily, weekly, monthly, quarterly and yearly data respectively.

include.weights

Only relevant if of="assets": If FALSE, weights are all set to 1. This might be
necessary if only single stock performance without weighting shall be consid-
ered.

include.costs If FALSE, the fixed and relative trading costs are NOT considered for perfor-
mance calculation. Default value is TRUE. As default values for costs are 0, this
argument is obsolete if no costs are given.

use.backtest If set to TRUE, the signals from the backtesting output are considered for maxi-
mum drawdown calculation. If FALSE, the signals from the initial strategy exe-
cution are used.

Examples

## Not run:

# MA(200)-Strategy
params <- list(k=200)
myStrat.MA <- Strategy(assets=assets, strat="MA", strat.params=params)

# Get performance indicators of MA(200)-Strategy assets
performanceIndicators(myStrat.MA, from="2015-01-01", until="2015-12-31")

## End(Not run)

plot Plot of a Strategy-object

Description

Calls a generic plot function that can plot the data of any Strategy-object. If a plotFUN-function
is given within the object, this user-defined function will be used. The generic function plots 3 parts:

• Price area Plots the asset price data and filters.

• Indicator area Plots the indicators and trading signals.

• Performance area Plots performance of the strategy.

Usage

## S3 method for class 'Strategy'
plot(x, y, from=NULL, until=NULL

, which.assets=NULL, which.filters=NULL, which.indicators=NULL
, main=NULL, show.signals=TRUE, include.costs=TRUE, ...)



plotDrawdowns 23

Arguments

x An object of class Strategy.

y Standard plot argument that is not relevant for Strategy objects!

from From date that chart is to be plotted.

until Until date that chart is to be plotted.

which.assets Which assets shall be plotted (each one will result in single plot)

which.filters Which filters shall be added to price plot. Default value NULL will return all
filters from the strategy.

which.indicators

Which indicators shall be added to indicator plot. Default value NULL will return
all filters from the strategy. If "none", no indicator is plotted and indicator area
is not shown.

main The main title of the plot.

show.signals If TRUE, the trading signals are shown within the indicators area of the plot.
Default value is TRUE.

include.costs If FALSE, the fixed and relative trading costs are NOT considered for perfor-
mance calculation. Default value is TRUE. As default values for costs are 0, this
argument is redundant if no costs are given.

... Further arguments passed to custom plotFUN (if available) of the object (x).

Examples

##Not run:

# MA(200)-Strategy
params <- list(k=200)
myStrat.MA <- Strategy(assets=assets, strat="MA", strat.params=params)

# Plot first asset of MA(200)-Strategy
plot(myStrat.MA, from="2015-01-01", until="2015-12-31", which.assets=1)

##End(Not run)

plotDrawdowns Plot Strategy Drawdowns

Description

Plots drawdowns of the performance of an object of class Strategy.



24 plotDrawdowns

Usage

plotDrawdowns(object, from = NULL, until = NULL, which = NULL,
of = "portfolio", type = "relative", include.costs = TRUE,
use.backtest = FALSE, returnValues = FALSE, ...)

## S4 method for signature 'Strategy'
plotDrawdowns(object, from = NULL, until = NULL,
which = NULL, of = c("portfolio", "assets"), type = c("relative",
"absolute"), include.costs = TRUE, use.backtest = FALSE,
returnValues = FALSE, ...)

Arguments

object An object of class Strategy.
from The date in character format "yyyy-MM-dd" or as date-object from which draw-

downs shall be plotted. If NULL, the start date of the performances is used.
until The date in character format "yyyy-MM-dd" or as date-object until which draw-

downs shall be plotted. If NULL, the end date of the performances is used.
which Names or number of assets that should be included in performance. If a portfolio

performance from only a subset of the assets is calculated, the weights are scaled
accordingly.

of Performance to be extracted from assets separately or the portfolio performance.
type If the absolute or relative drawdown of the performance shall be returned.
include.costs If FALSE, the fixed and relative trading costs are NOT considered for perfor-

mance calculation. Default value is TRUE. As default values for costs are 0, this
argument is redundant if no costs are given.

use.backtest If TRUE, the signals from the backtesting output are considered for drawdowns
calculation. If FALSE, the signals from the normal strategy execution with the
initial parameters are used.

returnValues If TRUE, the drawdown values are returned.
... Further arguments that can be passed to the underlying plot()-function.

Examples

##Not run:

# MA(200)-Strategy
params <- list(k=200)
myStrat.MA <- Strategy(assets=assets, strat="MA", strat.params=params)

# Plot MA(200)-Strategy drawdowns
plotDrawdowns(myStrat.MA, from="2015-01-01", until="2015-12-31")

# Plot backtested MA(200)-Strategy drawdowns
# plotDrawdowns(myStrat.MA, from="2015-01-01", until="2015-12-31", use.backtest=TRUE)

##End(Not run)



plotPerformance 25

plotPerformance Plot Strategy Performance

Description

Plots performance of an object of class Strategy.

Usage

plotPerformance(object, which = NULL, of = "portfolio", from = NULL,
until = NULL, use.backtest = FALSE, include.costs = TRUE,
plot.params = TRUE, plot.params.names = NULL, plot.params.first = TRUE,
...)

## S4 method for signature 'Strategy'
plotPerformance(object, which = NULL,
of = c("portfolio", "assets"), from = NULL, until = NULL,
use.backtest = FALSE, include.costs = TRUE, plot.params = TRUE,
plot.params.names = NULL, plot.params.first = TRUE, ...)

Arguments

object An object of class Strategy.
which Names or number of assets that should be included in performance. If a portfolio

performance from only a subset of the assets is calculated, the weights are scaled
accordingly.

of Performance to be extracted from assets separately or the portfolio performance.
from The date in character format "yyyy-MM-dd" or as date-object from which per-

formance shall be plotted. If NULL, the start date of the performances is used.
until The date in character format "yyyy-MM-dd" or as date-object until which per-

formance shall be plotted. If NULL, the end date of the performances is used.
use.backtest If TRUE, the signals from the backtesting output are considered for performance

calculation. If FALSE, the signals from the normal strategy execution with the
intial parameters are used.

include.costs If FALSE, the fixed and relative trading costs are NOT considered for perfor-
mance calculation. Default value is TRUE. As default values for costs are 0, this
argument is redundant if no costs are given.

plot.params If set to TRUE, the parameters used for the performance periods are plotted into
the chart. Requires that use.backtest is set to TRUE.

plot.params.names

New parameter names to be shown can be supplied. Requires that use.backtest
is set to TRUE to take effect.

plot.params.first

If TRUE, the parameter for the first period is plotted. Otherwise, the parameters
are plot at the point on the x-axis, from which they are valid. Requires that
use.backtest is set to TRUE to take effect.



26 plotWeights

... Further arguments that can be passed to the underlying plot()-function.

Examples

##Not run:

# MA(200)-Strategy
params <- list(k=200)
myStrat.MA <- Strategy(assets=assets, strat="MA", strat.params=params)

# Plot MA(200)-Strategy
plotPerformance(myStrat.MA, from="2015-01-01", until="2015-12-31")

# Plot backtested MA(200)-Strategy
# plotPerformance(myStrat.MA, from="2015-01-01", until="2015-12-31", use.backtest=TRUE)

##End(Not run)

plotWeights Plot Strategy Weights

Description

Plots the weights of the portfolio of an object of class Strategy.

Usage

plotWeights(object, from = NULL, until = NULL, ...)

## S4 method for signature 'Strategy'
plotWeights(object, from = NULL, until = NULL, ...)

Arguments

object An object of class Strategy.

from The date in character format "yyyy-MM-dd" or as date-object from which weights
shall be plotted. If NULL, the start date of the weights is used.

until The date in character format "yyyy-MM-dd" or as date-object until which weights
shall be plotted. If NULL, the end date of the performances is used.

... Currently not active.

Examples

##Not run:

# MA(200)-Strategy
params <- list(k=200)
myStrat.MA <- Strategy(assets=assets, strat="MA", strat.params=params)



sharpe 27

# Plot MA(200)-Strategy weights
plotWeights(myStrat.MA)

##End(Not run)

sharpe Get Sharpe Ratio of Performance

Description

Get the sharpe ratio of the performance of an object of class Strategy.

Usage

sharpe(object, rf=0, of="portfolio"
, from=NULL, until=NULL, which=NULL
, scaling.periods=NULL, include.costs=TRUE
, use.backtest=FALSE)

## S4 method for signature 'Strategy'
sharpe(object, rf = 0, of = c("portfolio", "assets"),
from = NULL, until = NULL, which = NULL, scaling.periods = NULL,
include.costs = TRUE, use.backtest = FALSE)

Arguments

object An object of class Strategy.

rf Risk free rate in decimal, e.g. rf=0.01 equals 1 percent.

of Sharpe ratio to be calculated for assets separately or the portfolio sharpe.

from The date in character format "yyyy-MM-dd" or as date-object from which per-
formance shall be considered. If NULL, no restriction is made.

until The date in character format "yyyy-MM-dd" or as date-object until which per-
formance shall be considered. If NULL, no restriction is made.

which Names or number of assets that should be included in calculation.
scaling.periods

Vector with annualization factors for sharpe ratio calculation. Default is 252,
52, 12, 4, 1 for daily, weekly, monthly, quarterly and yearly data respectively.

include.costs If FALSE, the fixed and relative trading costs are NOT considered for perfor-
mance calculation. Default value is TRUE. As default values for costs are 0, this
argument is obsolete if no costs are given.

use.backtest If TRUE, the performance of the backtesting output is considered for sharpe ratio
calculation. If FALSE, the performance of the initial strategy execution are used.



28 Strategy

Examples

## Not run:

# MA(200)-Strategy
params <- list(k=200)
myStrat.MA <- Strategy(assets=assets, strat="MA", strat.params=params)

# Get sharpe of MA(200)-Strategy portfolio
sharpe(myStrat.MA, from="2015-01-01", until="2015-12-31")

# Get backtest annualized sharpe of MA(200)-Strategy (daily data = 252 trading days)
# sharpe(myStrat.MA, from="2015-01-01", until="2015-12-31", use.backtest=TRUE, scaling.periods=252)

## End(Not run)

Strategy Create Strategy Object

Description

Creates an object of class Strategy with the given portfolio data and strategy-function.

Usage

Strategy(assets, strat = "buyhold"
, assetValueType = c("price", "logReturn"), weights = NULL, indicators = list()
, strat.params = list(), volume = 1000000
, costs.fix = 0, costs.rel = 0
, printSteps = FALSE)

Arguments

assets Time series of class xts of asset values in either price or log return form on
which the strategy function shall be applied. This is the portfolio of assets.

strat The name of the strategy that should be applied. This can be either a predefined
strategy like MA or EWMA or a self-written function in which case the full path
to the function file to be called must be supplied.

assetValueType Assets can be passed as prices or log returns. In order to identify the asset value
types, either one of the types has to be selected.

weights The portfolio weights for the given assets as time series (dynamic) or numerical
(constant) weights.

indicators A list of indicators that might be used within customized strategies. It is recom-
mended to pass a named list.

strat.params The list of parameters and their values required by the strategy function selected
with parameter strat.

volume Portfolio volume for trading. Default value is 1 Million.



Strategy-class 29

costs.fix The fix trading costs per trade.
costs.rel The trading costs, relative to the volume. I.e. a value of 10E-4 reflects the costs

of 10 basis points of the traded volume.
printSteps This is a feature used mainly for debugging the constructor function in order

to localize where unspecified errors occur. If set to true, the different steps run
within the constructor is printed to the console.

Examples

##Not run:

# MA(200)-Strategy
params <- list(k=200)
myStrat.MA <- Strategy(assets=assets, strat="MA", strat.params=params)

# Own MA-strategy-function
# myStrat.MA <- Strategy(assets=assets, strat="C:/MA_function.R")

##End (Not run)

Strategy-class Strategy-Class

Description

An S4 class to store quantitative strategies and compute various performance figures.

Slots

prices Price data of the assets. If return data was given within the constructor, starting at 100.
weights Time series of class xts indicating row wise weights of the assets.
indicators List of indicators of class xts.
strat Name of the strategy function to be called. Could be a full file path to a custom strategy.
strat.params List of parameters as input for the strategy function. List entry names should match

parameter names.
stratFUN Contains the custom strategy function or NULL.
plotFUN Contains the custom strategy function or NULL.
filters List with filtered price data (e.g. MA(200)-data).
signals Time series with trading signals of class xts.
backtest.signals Time series with trading signals of the backtest of class xts.
backtest.parameters List of parameters of the backtest.
backtest.setup Matrix showing the backtest preferences.
volume Numeric vector indicating the initial investment volume per asset.
costs.fix Numeric vector indicating the fixed costs per trade per asset.
costs.rel Numeric vector indicating the relative costs per trade per asset.



30 VaR

VaR Value at Risk

Description

Value at Risk of the assets or portfolio of an object of class Strategy.

Usage

VaR(object, alpha=0.05, V=1, type="normal.distribution"
, method="full", of="portfolio"
, from=NULL, until=NULL, which=NULL
, scaling.periods=NULL, include.weights=TRUE
, include.costs=TRUE, use.backtest=FALSE)

## S4 method for signature 'Strategy'
VaR(object, alpha = 0.05, V = 1,
type = c("normal.distribution", "historical"), method = c("full",
"linear"), of = c("portfolio", "assets"), from = NULL, until = NULL,
which = NULL, scaling.periods = NULL, include.weights = TRUE,
include.costs = TRUE, use.backtest = FALSE)

Arguments

object An object of class Strategy.
alpha The significance level α that is used for propability of cumulative loss at level

1− α.
V Volume that is invested. The linear factor for the VaR calculation. Either a single

value for portfolio or a vector for each asset.
type Type of VaR calculation. Use normal.distribution for the normal distribu-

tion, historical for the empirical distribution. Default value is historical.
method Method of loss calculation. Use linear for approximation with log returns or

full for calculation with arithmetic returns. Default value is full.
of VaR to be calculated for assets separately or the portfolio.
from The date in character format "yyyy-MM-dd" or as date-object from which losses

shall be considered. If NULL, no restriction is made.
until The date in character format "yyyy-MM-dd" or as date-object until which losses

shall be considered. If NULL, no restriction is made.
which Names or number of assets that should be included in calculation.
scaling.periods

Vector with annualization factors for calculation. Default is 252, 52, 12, 4, 1 for
daily, weekly, monthly, quarterly and yearly data respectively.

include.weights

Only relevant if of="assets": If FALSE, weights are all set to 1. This might be
necessary if only single stock performance without weighting shall be consid-
ered.



VaR 31

include.costs If FALSE, the fixed and relative trading costs are NOT considered for perfor-
mance calculation. Default value is TRUE. As default values for costs are 0, this
argument is obsolete if no costs are given.

use.backtest If TRUE, the performance of the backtesting output is considered for VaR calcu-
lation. If FALSE, the performance of the initial strategy execution are used.

Examples

## Not run:

# MA(200)-Strategy
params <- list(k=200)
myStrat.MA <- Strategy(assets=assets, strat="MA", strat.params=params)

# Get VaR of MA(200)-Strategy portfolio
VaR(myStrat.MA, from="2015-01-01", until="2015-12-31")

# Get backtest VaR of MA(200)-Strategy
# VaR(myStrat.MA, from="2015-01-01", until="2015-12-31", use.backtest=TRUE)

## End(Not run)



Index

∗ datasets
assets, 2

assets, 2

backtest, 3, 10, 12, 14, 15
backtest,Strategy-method (backtest), 3

compare, 4
compare,Strategy-method (compare), 4

ES, 5
ES,Strategy-method (ES), 5

getBacktestSetup, 7
getBacktestSetup,Strategy-method

(getBacktestSetup), 7
getCosts, 8
getCosts,Strategy-method (getCosts), 8
getFilters, 8
getFilters,Strategy-method

(getFilters), 8
getIndicators, 9
getIndicators,Strategy-method

(getIndicators), 9
getParameters, 10
getParameters,Strategy-method

(getParameters), 10
getPrices, 11
getPrices,Strategy-method (getPrices),

11
getSignals, 11
getSignals,Strategy-method

(getSignals), 11
getStratFUN, 12
getStratFUN,Strategy-method

(getStratFUN), 12
getStratName, 13
getStratName,Strategy-method

(getStratName), 13
getTrades, 14

getTrades,Strategy-method (getTrades),
14

getWeights, 15
getWeights,Strategy-method

(getWeights), 15

hitratio, 16
hitratio,Strategy-method (hitratio), 16

loss, 17
loss,Strategy-method (loss), 17

MDD, 18
MDD,Strategy-method (MDD), 18

newStrategyFunction, 19

performance, 20
performance,Strategy-method

(performance), 20
performanceIndicators, 21
performanceIndicators,Strategy-method

(performanceIndicators), 21
plot, 22
plot,Strategy,missing-method (plot), 22
plot.Strategy (plot), 22
plotDrawdowns, 23
plotDrawdowns,Strategy-method

(plotDrawdowns), 23
plotPerformance, 25
plotPerformance,Strategy-method

(plotPerformance), 25
plotWeights, 26
plotWeights,Strategy-method

(plotWeights), 26

sharpe, 27
sharpe,Strategy-method (sharpe), 27
Strategy, 28
Strategy-class, 29

32



INDEX 33

VaR, 30
VaR,Strategy-method (VaR), 30


	assets
	backtest
	compare
	ES
	getBacktestSetup
	getCosts
	getFilters
	getIndicators
	getParameters
	getPrices
	getSignals
	getStratFUN
	getStratName
	getTrades
	getWeights
	hitratio
	loss
	MDD
	newStrategyFunction
	performance
	performanceIndicators
	plot
	plotDrawdowns
	plotPerformance
	plotWeights
	sharpe
	Strategy
	Strategy-class
	VaR
	Index

